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Abstract
In this paper the decay rate is obtained accurately near the crossover
temperature. Because of the strong fluctuations near the crossover temperature
a method called the effective Landau theory beyond the Gaussian semiclassical
approximation is developed. We find that in the crossover region the transition
rate of the first-order transition changes much more sharply than that of the
second-order one. For both cases there is no discontinuity of transition rate for
any of the order derivatives.

1. Introduction

The decay of metastable states in macroscopic systems is a fundamental problem in many areas
of physics, such as macroscopic quantum tunnelling in a Josephson system [1, 2], violation
of baryon-lepton in the Weinberg–Salam model [3, 4], nucleation theory in first-order phase
transition theory [5, 6] and more recently, magnetic quantum resonant tunnelling [7–9]. The
crossover from thermal hopping to quantum tunnelling has been studied intensively. Using the
functional integral approach, Affleck first demonstrated that the transition can be found between
the classical region and the quantum region [10]. Larkin and Ovchimikov also suggested this
and gave a formula determining the boundary of first- and second-order transitions [11, 12].
The general conditions of transitions have been analysed by Chudnovsky [13].

Quite recently an effective free energy F(E) for the quantum-classical transitions of the
escape rate of a spin system or other system was advanced [14–25]. In the steepest descent
approximation the transition rate is given by � ∼ e−Smin/T , where Smin is the minimum of the
effective ‘free energy’

F = Smin = E + T S(E) (1)

where

S(E) = 2(2M)1/2
∫ x1(E)

x2(E)

√
U(x)− E dx

x1 and x2 are the turning points for the particle oscillating inside the inverted potential −U(x).
0953-8984/01/112627+12$30.00 © 2001 IOP Publishing Ltd Printed in the UK 2627
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The actual dependence ofSmin(T ) goes along the minimum of these two actions (sphelaron
and periodic instanton) and the transition occurs at T = T1. The first derivative of Smin(T ) is
discontinuous at T1, providing that the crossover from thermal hopping to quantum tunnelling
is the first-order transition, otherwise second-order transition.

The second-order transitions are common, whereas the first-order ones are exotic and have
to be specially looked for. Qualitatively it is clear how U(x) will look. The potential should
change slowly near the top and the bottom, but will be rather steep in the middle. In this case,
as for the rectangular barrier, tunnelling just below the top of the barrier is unfavourable, the
thermal assisted tunnelling (TAT) is suppressed, and the thermal activation competes with the
quantum tunnelling directly, leading to the first-order transition.

Quantum tunnelling of the magnetization (QTM) has become a focus of interest in physics
and chemistry because it can provide a signature of quantum mechanical behaviour in a
macroscopic system [7–9]. At a low enough temperature, it has been demonstrated that
the vector of the magnetization formed by a large number of spins in a magnetic system can
coherently tunnel between the degenerate minima of magnetic energy. Theoretical suggestions
have led to a number of experiments which seem to support the idea of magnetic tunnelling.
Since the Mn12Ac complex magnetic molecule provides a more suitable model for the magnetic
quantum tunnelling, extensive works have been performed to demonstrate the QTM in large
spin molecules [26]. On the other hand, the Mn12Ac molecule is one of the very few examples
which could exhibit the first-order transition [14, 15]. It has been reported that CrNi6 is the
first example of a high-spin molecule where tunnelling is temperature independent at low-
temperature, and the transition from the classical activated behaviour to the quantum one is
sharp and consistent with first-order [27].

In the second part of this paper, we derive a compact formula for the decay rate: effective
Landau theory for crossover which is valid for the entire range of parameters of the interesting
problems in QTM. The quantum-classical transitions of the escape rates in the dissipation
systems are investigated by the effective-mode method. In the next part, we discuss the
tunnelling of second-order transitions which is well known. Applying the effective-mode
method in the fourth part, we show how the first-order transitions occur. The results of the
application of a previous method is developed for dealing with the quasi-zero modes up to
sixth-order coupling and calculating the decay rate in the crossover region which is beyond
the Gaussian semiclassical approximation [28–31]. Finally we show that the crossover theory
may be useful to two familiar examples of QTM.

2. Effective-Landau theory

In this paper we use an effective-mode method [17] to show first-order transition Landau
theory. The Euclidean action is written as a functional integral over periodic paths where the
path probability is weighted by

S =
∫ h̄/kBT

0
dτ

[
1

2
Mẋ2 + U(x)

]
+

1

2

∫ h̄/kBT

0
dτ

∫ h̄/kBT

0
dτ ′k(τ − τ ′)x(τ )x(τ ′) (2)

where

k(τ ) = kBT

Mh̄

∞∑
n=−∞

ξ(νn) exp(iνnτ)

νn = 2πnkBT /h̄ and ξ(νn) = γ (νn)|νn|
is related to the frequency-dependent damping coefficient γ (νn). We use ωR to denote
the solution of the following equation ω2

R + ωRγ (ωR) = ω2
b where ωb = √−U ′′(xb)/M
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characterizes the width of the parabolic top of the well. In the classical limit, 1/h̄ → ∞, the
steepest descent method is available:

δS[x(τ)] = 0 x(0) = x(h̄/kBT ). (3)

The fluctuation modes about the saddle point are expanded using �n, x = xc(τ ) +
∑
n Yn�n,

where Yn are fluctuation amplitudes and �n are modes of the spectrum:

−�̈n + U [xc(τ )]�n = ω2
n�n �(h̄/kBT ) = �(0). (4)

According to the metastable-decay theory, the quantum tunnelling rate has the form
� = − 2

h
Im F . Above the crossover temperature, Tc, the decay process comes from the

thermal activation � = (2/h̄)(Tc/T )Im F where Tc = ωR/2πkB [10]. In the ordinary case,
the one-loop correction which results in a prefactor of the WKB leading order exponential,
does not enhance the tunnelling significantly and the transition rate is dominated by the WKB
leading order exponential. Near the transition point the imaginary part of the free energy has
a common form:

Im F = −kBT
2

(
ω0

ωR

)
ω
(0)2
1

 
fc exp

(−Sc
h̄

)
(5)

where Sc is just the WKB leading order exponent, 1
2 is due to the negative mode, ω(0)2n =

ω2
0 + ν2

n + νnγ (νn), ω(b)2n = −ω2
b + ν2

n + νnγ (νn), 1/ comes from the two quasi-zero modes
which need to be calculated carefully and

fc[ω0, ωb] =
∞∏
n=2

[
ω(0)n

ω
(b)
n

]2

= �(2 − (λ+
b/ν1))�(2 − (λ−

b /ν1))

�(2 − (λ+
0/ν1))�(2 − (λ−

0 /ν1))
(6)

where

λ±
b = −γ (0)

2
±

[
γ (0)2

4
+ ω2

b

]
λ±

0 = −γ (0)
2

±
[
γ (0)2

4
− ω2

0

]
and

ω0 =
√

−U ′′(0)/M

�(x) is the Gamma function.
The line of reasoning in a Gaussian semiclassical approximation is as follows. If the

minima are separated by barriers the height of which is larger than O(kBT ), a Gaussian
approximation around each minimum is applicable, and the semiclassical rate follows as a
sum over these contributions. If the classical actions of these contributions differ by less
than the order of h̄, all must be summed, otherwise only the dominant ones must be kept.
Some years ago Grabert and Weiss discussed the transition rate in the presence of dissipative
effects of the environment in some detail. In addition to the zero mode near the transition
point they found an unstable mode and calculated it carefully [17, 28–33]. Near the phase
transition point the fluctuation modes about the saddle points include two dangerous modes
which cannot be calculated by the Gaussian semiclassical approximation and it is necessary
to consider higher-order couplings between the two dangerous modes [17, 28–33].

To regularize the divergent integral we have to add terms of higher-order in the amplitudes
Y±1. After expanding the potential about the barrier top

U(x) = #U − Mω2
bx

2

2
+

∑
i

cix
i (7)

where ci = U [i](x = xb)/i!, we obtain the action

S[Yn] = h̄

kBT
#U +

1

2

h̄

kBT
M

[ ∞∑
n=−∞,n 
=±1

ω(b)2n Y 2
n

]
+#S (8)
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where

#S = h̄

kBT

[
Mω

(b)2
1

2
(Y 2

1 + Y 2
−1)

+B4(Y
2
1 + Y 2

−1)
2 + B6(Y

2
1 + Y 2

−1)
3

]
(9)

with

B6 = 5

2
c6 − 2c2

4

Mω
(b)2
3

B4 = 3

2
c4 +

9c2
3

2Mω2
b

− 9c2
3

4Mω(b)22

and

ω
(b)2
2 = 4ν2 − ω2

b � 3ω2
b.

Introducing the polar coordination: φ cos θ = Y1, φ sin θ = Y−1, we define the effective
Landau function5

L = S[Y±1]kBT /h̄−#U = Mω
(b)2
1

2
φ2 + B4φ

4 + B6φ
6 Mω

(b)2
1

2
∝ (T − Tc). (10)

The analogy with the Landau model of phase transitions described by F = aφ2 + bφ4 + cφ6,
now becomes apparent. Let us show the one-component order-parameter associated with the
expansion:

L = α

2
φ2 +

β

4
φ4 +

γ

6
φ6 α = Mω(b)21 β = 4B4 γ = 6B6. (11)

This is a typical O(2) global symmetry broken and φ is the order parameter. Because
there is no spacial-dimension, the systems have no long-range order. The quasi-zero mode
�−1 = √

2 sin(ωRτ) just takes place of ‘soft mode’ which restores symmetry and the zero
mode of the Goldstone mode�1 = √

2 cos(ωRτ) which reflects the freedom of phase. This is
just the character of global O(2) broken symmetry.

This definition of order parameter gives the same crossover properties as before√
(#U − E)/#U [14]. Dimensionless temperature and energy variables θ = T/Tc, P =

(#U −E)/#U have been introduced in terms of which the effective free energy near the top
of the barrier (P  1) becomes

F(P )/#U � 1 + AP + BP 2. (12)

It is obvious that P takes the place of φ in this paper.
The boundary between the first-order transition and the second order one is as follows:

B4 = 3

2
c4 +

9c2
3

2Mω2
b

− 9c2
3

4Mω(b)22

= 0.

It is obvious that the dissipation may change the boundary between the first-order transition
and the second-order one. B4 is changed through the damping coefficient at frequency
ω
(b)2
2 = −ω2

b + ν2
n + νnγ (νn).

3. Crossover of second-order transition: B4 > 0

First let us study the case of second-order transition (B4 > 0).
Second-order transition occurs when the eigenvalue of the lowest mode is equal to zero

λ1 = 0 as temperature decreases, so it is defined as Tc = ωR/2πkB . Above Tc, the decay

5 The effective Landau function is just the fluctuation potential in [30].
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ω
2
=0

Tc

positive mode

zero mode

negative mode

ω2

T

Figure 1. Modes near the crossover temperature of the second-order transition.

process is dominated by the saddle point, called a sphelaronx = xb. Considering the fluctuation
modes around it, we have the periodic paths near the saddle point [17, 28–33]

x = xb + Y0 + Y−1

√
2 sin

2π

L
τ + Y1

√
2 cos

2π

L
τ + · · ·

+Y−n
√

2 sin
2πn

L
τ + Yn

√
2 cos

2πn

L
τ . . . . (13)

There is a mode with negative eigenvalue ω(b)20 = −ω2
b = −U ′′/M which is the key mode

giving a contribution to the imaginary part of the free energy. The eigenvalues of the two
lowest positive modes are λ1 = ω

(b)2
1 = ω

(b)2
−1 = ν2

1 − ω2
R . A second-order transition occurs

when the eigenvalue of the lowest mode is equal to zero λ1 = 0 as temperature decreases, so it
is defined that: Tc = ωR/2πkB . Near the transition point, the eigenvalue of the lowest positive
mode is:

λ1 = −2ω2
Rε (14)

where ε = (1 − (T /Tc)).
Below Tc, the saddle point is called a periodic instanton or thermon. Near Tc, this kind of

classical periodic trajectory of thermion may be written as a Fourier series

xc(τ ) =
∞∑
n=0

[Xn cos(νnτ ) +X−n sin(νnτ )] (15)

The periodic paths near the saddle point are x = xc(τ ) +
∑
n Yn�n = ∑

n(Yn + Xn)�n. We
define the amplitudes into another form Y ′

n = Yn + Xn. There are also two dangerous modes
about this saddle point near T (2)0 : one is a quasi-zero mode which is associated with amplitude
fluctuations of the periodic instantons, with the eigenvalue and eigenstates of ω(b)2−1 = 4ω2

Rε

and�−1 = √
2 sin(ωRτ); the other represents phase fluctuations and gives a large contribution

to the partition function with ω(b)21 = 0 and �1 = √
2 cos(ωRτ). Figure 1 shows the modes

near the crossover temperature of the second-order transition.
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The action is reduced to

S[Y±1] − h̄

kBT
#U = h̄Mω

(b)2
1

2kBT
(Y 2

1 + Y 2
−1) +

h̄

kBT
B4(Y

2
1 + Y 2

−1)
2 (16)

which is equivalent to the effective Landau function

L = S[Y±1]kBT /h̄−#U = Mω
(b)2
1

2
φ2 + B4φ

4 Mω
(b)2
1

2
∝ (T − Tc). (17)

Above Tc there is only one minimum φc = 0; below Tc, φc = 0 is not stable. There is another

oneφp =
√
Mω

(b)2
1 /4B4 which represents the periodic instanton solutionx = √

2φp sin(ωRτ).
It is well known that there is a universal law in the crossover region of a second-order

transition [17, 28–33]. The crossover region is defined as

|T − Tc| � Tc/κ (18)

where κ = (Mω2
R/2)

√
1/kBT B4  1. Above Tc, the transition rate is

� = ω0

2π

ω
(0)2
1

 
fc[ω0, ωb] e−#U/kBT (19)

where 1/ = (κ√π/2ω2
R) erfc(−κε) exp(κ2ε2). Below Tc the tunnelling rate is

� = kBT

h̄

ω0

ωb

ω
(0)2
1

 
fc[ω0, ωb] e−#U/kBT . (20)

To show the universal law a quantity is defined as

y = � exp(#U/kBT ) (21)

which is a function of ε but independent of the temperature T . With the quantity y, we have
the universal law

y/y0 = F(ξ/ξ0) (22)

where

F(ξ) = erfc(ξ) exp(ξ 2) ξ = T − Tc ξ0 = Tc/κ
and

y0 = (ω0/2π)((ω
2
0 + ω2

b)/2)
√
π/6kBT c4fc[ω0, ωb].

4. Crossover of first-order transition: B4 < 0

Let us discuss the first-order transition for B4 < 0 and show how it occurs.
Here phase I is the region dominated by quantum tunnelling and phase II by thermal

activation. The Landau function:

L = α

2
φ2 +

β

4
φ4 +

γ

6
φ6 α = Mω(b)21 β = 4B4 γ = 6B6 (23)

describes, when assuming β < 0 and γ > 0, a first-order transition between two phases
denoted by I and II. The factor α changes sign at Tc. There indeed exists a phase boundary
between the first- and second-order transitions, i.e. β = 0, at which the factor in front of φ4

changes the sign.
From the Landau theory of first-order phase transitions, the temperature at which the two

phases have the same free energy is

T1 = Tc +
3

16

β2

γ a
a = Mω(b)21 . (24)
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T1 is always regarded as the crossover temperature for the first-order cases. At T1, phase I and
phase II are equally stable when the additional condition L = 0 is fulfilled. Below T1, phase I
becomes less stable than phase II, which exists until Tc. Above T2 phase II does not exist until

T2 = Tc +
β2

4γ a
. (25)

In the region Tc < T < T2 = Tc + (2/3Mω(b)21 ) the two phases may coexist and the hopping
process has two channels: one is above the barrier, the other below it.

4.1. Thermal hopping region: T > T2

Above T2, the decay process is dominated by the sphelaron (φc = 0). Near φc = 0, the
quasi-zero modes have been discussed and the eigenvalue of the two lowest positive modes
is: λ1 = −ω2

Rε where ε = (1 − (T /Tc)). We deal with the quasi-zero modes to consider the
sixth term and integrate the order parameter

1

 total
= 1

 sphe
= 1

2πkBT

∫ ∞

0
φ dφ

∫ 2π

0
dθ exp

[
−

(
α

2
φ2 +

β

4
φ4 +

γ

6
φ6

) /
kBT

]

= 1

2kBT
[B6/kBT ]−1/3

∫ ∞

0
dt exp[−(t3 + ϑt2 − 3κ ′εt)] (26)

where

κ ′ = Mω2
R

3kBT
[B6/kBT ]−1/3 ϑ = 3β(kBT )−1/6

2γ
.

Then above Tc, the transition rate is

� = ω0

2π

ω
(0)2
1

 total
fc[ω0, ωb] e−#U/kBT . (27)

When |−κ ′ε|  1, the Gaussian semiclassical approximation becomes reasonable. Hence
away from the crossover region |−κ ′ε|  1 we can drop the t3 +ϑt2 term from the fluctuation
potential and have

1

 total
= 1

2kBT
[B6/kBT ]−1/3

∫ ∞

0
dt exp(3κ ′εt) = 1

2Mω2
Rε
. (28)

The decay rate then goes back to the classical one

� = ω0

2π

ω
(0)2
1

2Mω2
Rε
fc[ω0, ωb] e−#U/kBT → ω0 e−#U/kBT . (29)

4.2. Quantum tunnelling region: T < Tc

Below Tc, the decay process is dominated by the periodic instanton
√

2φp sin(ωRτ) with the
order parameter φp = (−β +

√
β2 − 4αγ )/2α. Near this solution, the quasi-zero modes

change and the eigenvalue of the lowest positive mode is:

λ1 = −4α
√
αγT2/

(
β +

√
β2 − 4αγ

) √
ε. (30)

From a similar calculation, we obtain the transition rate:

� = ω0

2π

ω
(0)2
1

 total
fc[ω0, ωb] e−#U/kBT (31)
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0

L

instanton region

sphelaron region

φ
q

φ
0

Figure 2. Instanton region ∞ > φ > φ0 and sphelaron region 0 < φ < φ0 during the first-order
transition for Tc < T < T2.

with

1

 total
= 1

 ins
= 1

2kBT
[B6/kBT ]−1/3

∫ ∞

0
dt exp[−(t3 + ϑt2 − 3κ ′εt)]. (32)

Away from the crossover region | − 3κ ′εφp|  φ3
p + ϑφ2

p, a Gaussian approximation around
the instanton is applicable and the tunnelling rate is reduced to the standard form

� = 1

#

√∑
n
=0 ω

(0)2
n√∑

n 
=0,1 ω
(b)2
n

e−Sc/h̄ (33)

where 1/# = √
Sc/2πh̄(h̄/kBT ). This is known as the Faddeev–Popov technique.

4.3. Coexistence region: Tc < T < T2

In the coexistence region Tc < T < T2, the order parameter has two solutions: one is φc = 0,
the other is

φp =
(
−β +

√
β2 − 4αγ

)
/2α. (34)

The condition β2 − 4αγ < 0 gives the high-temperature limit T2 = Tc + (β2/4γ a) of the
instanton solution

√
2φp sin(ωRτ).

In this temperature region Tc < T < T2, fluctuations are so strong that contributions of
all points are required to be considered. Instead of two points (φc and φp) which represent the
sphelaron and periodic instanton, we have two regions: the instanton region and the sphelaron
region (shown in figure 2). Another point φ0 = (−β −

√
β2 − 4αγ )/2α divides the order

parameter into two regions: ∞ > φ > φ0 is the instanton region, another 0 < φ < φ0 for
small one is the sphelaron region. Remember that φc = 0 has been called the ‘sphelaron’; φp
takes the place of the ‘periodic instanton’.
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First we integrate the order parameter’s fluctuations in the sphelaron region 0 < φ < φ0

1

 sphe
= 1

2πkBT

∫ φ0

0
φ dφ

∫ 2π

0
dθ exp

[
−

(
α

2
φ2 +

β

4
φ4 +

γ

6
φ6

) /
kBT

]

= 1

2kBT
[B6/kBT ]−1/3

∫ t0

0
dt exp[−(t3 + ϑt2 − 3κ ′εt)]. (35)

where t0 = √
γ /6kBT φ2

0 . Near Tc, 1/ sphe turns into zero as φ0 → (2aγ /β)(T − Tc) → 0
and the decay rate from thermal hopping disappears as (T − Tc)2.

For the instanton region ∞ > φ > φ0, we have:

1

 ins
= 1

2kBT
[B6/kBT ]−1/3

∫ ∞

φ0

dt exp[−(t3 + ϑt2 − 3κ ′εt)]. (36)

At T2, although there are two zero modes around one instanton, the transition rate from it is
not zero but

1

2kBT2
[B6/kBT2]−1/3

∫ ∞

φ0

dt exp[−(t3 + ϑt2)]. (37)

In the range Tc < T < T2 it is reasonable to integrate the parameter φ from zero to infinity
which means that the fluctuation amplitudes Y±1 are not constrained. The total hopping rate
is determined by two parts as

�total = �sphe + �ins � 1

kBT h̄

(
ω0

ωR

)
ω
(0)2
1

 total
fc[ω0, ωb] e−#U/kBT (38)

where
1

 total
= 1

2kBT
[B6/kBT ]−1/3

∫ ∞

0
dt exp[−(t3 + ϑt2 − 3κ ′εt)].

Considering the order parameter’s strong fluctuations, we have the remarkable result that there
is no discontinuity in the transition rate’s first derivative with temperature. From figure 3, one
can see that in the crossover region the transition rate of the first-order transition changes much
more sharply than that of the second-order one.

If the minima, however, are not separated by sufficiently high barriers (and the
corresponding classical action differs by less than h̄), to speak of a ‘sphelaron’ and an
‘instanton’ region is simply not possible, for we cannot distinguish them. While in this case
the formula of the total hopping rate has no change.

Another interesting problem is the universal law in the crossover region |−κ ′ε| < 1 of
first-order transition. Similar to that of the second-order transition, the universal law of first-
order transition can be also defined with the quantity y = � exp(#U/kBT ). With y, we have
the universal law

y/y0 = F(ξ/ξ0) (39)

where

F(ξ) =
∫ ∞

0
dt exp[−(t3 + ϑt2 − 3ξ t)] ξ = T − Tc ξ0 = Tc/κ ′

and

y0 = ω0

12ωb
(ω2

0 + ω2
b)[B6/kBT ]−1/3F(0)fc[ω0, ωb] (40)

with

F(0) =
∫ ∞

0
dt exp[−(t3 + ϑt2)]. (41)



2636 S P Kou et al
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B
4
<0

B
4
=0

B
4
>0

T
c

1

(T-Tc)/Tc

Γ/Γ(T
c
)

Figure 3. Transition rate near crossover temperature of different case: first-order transitionB4 < 0,
second-order transition B4 > 0 and the boundary of them B4 = 0.

5. Application

The results can be easily used in Mn12Ac whose Hamiltonian H = −DS2
z − HxSx can be

mapped onto a particle problem [14, 15], and the equivalent particle Hamiltonian is

H = 1

4D
x2 + S(S + 1)D(hx cosh x − 1)2 (42)

where hx = Hx/2SD. The equation B4 = S(S + 1)Dhx(hx − 1/4)/2 = 0 gives the phase
boundary point hx = 1

4 .
Another example is the biaxial anisotropic ferromagnetic model H = K1S

2
z +K2S

2
y which

describes XOY easy plane anisotropy and an easy axis along the x direction with the anisotropy
constantsK1 > K2 > 0. Mapped onto a particle problem, the equivalent particle Hamiltonian
is

H = 1

4K1
ẋ2 −K2S(S + 1) sn2(x, λ) (43)

where sn (τ, λ) is the Jacobi elliptic function with modulus λ = K2/K1. From the equation
B4 = K2S(S + 1)(1 − λ)(1 − 2λ)/2 = 0, the phase boundary point is obtained as λ = 1

2 .

6. Conclusion

In this paper we have shown that the decay rate � can be accurately determined near the
crossover temperature. Because the fluctuations of order parameter, φ, near the crossover
temperature are very strong, one must use a method beyond the Gaussian semiclassical
approximation. Based on this idea we develop the effective Landau theory of crossover
phenomenon. The crossover temperature can be obtained easily

Tc = ωR

2πkB
second-order transition

T1 = Tc +
B2

4

2B6Mω
(b)2
1

first-order transition (44)
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where

B4 = 3

2
c4 +

9c2
3

2Mω2
b

− 9c2
3

4Mω(b)22

= 0

is the boundary between the first-order transition and the second-order one. With this
theory [17, 28–33], not only is a new kind of global broken symmetry pointed out, but also
the first-order transition is easily studied, especially the phase-coexistence of crossover is first
proposed. After a detailed discussion, we find that there is no discontinuity of the transition
rate’s first derivative during the first-order transition.
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